

4701 W. Russell Rd Suite 200 Las Vegas, NV 89118-2231 Phone (702) 455-5942 Fax (702) 383-9994

PART 70 OPERATING PERMIT TECHNICAL SUPPORT DOCUMENT

(STATEMENT of BASIS)

APPLICATION FOR: **Part 70 Operating Permit Minor Revision**

SUBMITTED BY: Calnev Pipe Line LLC

FOR: Calnev Pipe Line LLC Source: 00013

LOCATION: 5049 North Sloan Lane Las Vegas, Nevada, 89115

SIC code 4226, "Special Warehousing and Storage, Not Elsewhere Classified" NAICS code 493190, "Other Warehousing and Storage"

Application Received: November 13, 2024

TSD Date: February 24, 2025

EXECUTIVE SUMMARY

Calnev Pipe Line LLC is a bulk fuel storage and transfer operation located in Hydrographic Area 212, which is currently designated as an attainment area for all regulated air pollutants except ozone. Hydrographic Area 212 was designated a moderate nonattainment area for ozone on January 5, 2023. The designation did not impose any new requirements at that time. Hydrographic Area 212 was designated a serious nonattainment area for ozone on January 21, 2025. Clark County has drafted or imposed new requirements to address this designation. The source is a categorical stationary source, as defined by AQR 12.2.2(j)(23): petroleum storage and transfer units with total storage capacity exceeding 300,000 barrels. Therefore, fugitive emissions are included with the applicability determination. The source is a major source for volatile organic compound (VOC) pollutants and a minor source for all other criteria pollutants and HAP. The source consists of petroleum storage tanks, vapor holding tank, loading lanes, diesel-powered air compressor, diesel-powered fire water engine, cooling tower, wastewater treatment system, and haul roads. The source falls under SIC Code 4226: Special Warehousing and Storage, Not Elsewhere Classified and NAICS Code 493190: Other Warehousing and Storage.

Fuels are delivered to the site by two underground pipelines originating in southern California. Incoming fuels are diverted to storage tanks. From these storage vessels fuels are piped to other terminals or loaded onto delivery trucks. As the trucks are filled, specialized additives are injected according to customer's specifications.

The following table summarizes the source's potential to emit (PTE) each regulated air pollutant from all emission units addressed by this Part 70 Operating Permit.

Table 1: Source-wide Potential to Emit

Pollutant	PM ₁₀	PM _{2.5}	NOx	СО	SO ₂	VOC	HAPs ¹	Pb	H ₂ S	GHG ²
Tons/year	9.85	1.58	3.26	2.55	0.18	188.00	9.30	0	0	11,440.88
Major Source Thresholds (Categorical)	100	100	100	100	100	100	10/25 ¹	0	0	100,000
Major Source Serious nonattainment			50			50				

¹ A major source is defined as 10 tons for any individual HAP or 25 tons for combination of all HAPs.

This Technical Support Document (TSD) accompanies the proposed Part 70 Operating Permit for Calnev Pipe Line LLC.

² Metric tons per year of carbon dioxide equivalent. GHG = greenhouse gas pollutants.

TABLE OF CONTENTS

I.	ACRONYMS	4
II.	SOURCE DESCRIPTION	5
	A. Description of Source	
	B. Permitting History	
	C. Current Permitting Action	
III.	EMISSIONS INFORMATION	5
111.	A. Emission Unit List	
	B. Applicability Emissions	
	11 ,	
	C. Source PTE	
	D. Operational Limits	
	E. Control Technology	
	F. Monitoring	
	G. Performance Testing	/
IV.	REGULATORY REVIEW	7
V.	INCREMENT ANALYSIS	7
VI.	PUBLIC PARTICATION	7
VII.	ENVIRONMENTAL JUSTICE	7
VIII.	ATTACHMENTS	8
	LIST OF TABLES	
Table	I-1: List of Acronyms	4
Table	III-A-1: Affected Emission Unit	5
	III-B-1: Source-wide PTE (tons per year)	
	III-C-1: Source PTE (tons per year)	
	III-C-2: Emissions Increase (tons per year)	
	VIII-1. PTE Calculations for Modified Emission Unit (Haul Road)	
	VIII-2. Source PTE and Applicability Emissions (tons per year)	

I. ACRONYMS

Table I-1: List of Acronyms

Acronym Term

AQR Clark County Air Quality Regulations

ATC Authority to Construct

BACT Best Available Control Technology

CF Control factor

CFR Code of Federal Regulations

CO carbon monoxide

CO₂e carbon dioxide equivalent

DAQ Division of Air Quality

DES Clark County Department of Environment and Sustainability

DOM date of manufacture

EF emissions factor

EPA U.S. Environmental Protection Agency

EU emission unit

GHG greenhouse gas

HA Hydrographic Area

HAP hazardous air pollutant

hp horsepower kW kilowatts

NAAQS National Ambient Air Quality Standard

NAICS North American Industry Classification System

NO_X nitrogen oxide(s)

PM_{2.5} particulate matter less than 2.5 microns in aerodynamic diameter

PM₁₀ particulate matter less than 10 microns in aerodynamic diameter

PTE potential to emit

RACT Reasonably Achievable Control Technology

SCC Source Classification Code

SIC Standard Industrial Classification

SO₂ sulfur dioxide

TDS Total Dissolved Solids

VOC volatile organic compound

II. SOURCE DESCRIPTION

A. DESCRIPTION OF SOURCE

Kinder Morgan's subsidiary Calnev Pipe Line, LLC (Calnev) owns and operates a petroleum products distribution terminal facility at 5049 North Sloan Lane in Las Vegas, Nevada. Las Vegas Terminal operations include receiving petroleum fuel products via pipeline or truck and transferring gasoline, diesel, and biodiesel from storage tanks into trucks via loading racks.

B. PERMITTING HISTORY

January 29, 2024: Renewal of Title V operating permit.

May 6, 2024: Administrative revision to correct numbering error in the Recordkeeping section of the operating permit.

July 3, 2024: Minor revision to add a manway to an existing fuel additive storage tank.

C. CURRENT PERMITTING ACTION

On November 13, 2024, the permittee submitted a minor revision application requesting to increase the annual VMT for unpaved roads from 1,635 to 5,457 miles (EU: E01).

Additionally, DAQ is making a correction to the facility PTE for PM_{2.5} that had inadvertently occurred in a previous calculation.

This document is limited to the emission unit being modified for this permitting action.

III. EMISSIONS INFORMATION

A. EMISSION UNIT LIST

Table III-A-1: Affected Emission Unit

EU	Rating	Description
E01 ^M	RT = 0.71 miles	Haul Road; Unpaved

Note: 'M' superscript denotes a modified emission unit for this permitting action

B. APPLICABILITY EMISSIONS

Permitting applicability is determined by calculating the emissions for all proposed emission units using 8,760 hours of operation (except for emergency generators or fire pumps, which use 500 hours), any inherent controls, any inherent throughput limitations, and the emission factors provided by the manufacturer, by source test results, by EPA AP-42, or by other approved methods. As a categorical source, fugitive emissions are required to be included with applicability calculations.

Table III-B-1: Source-wide Applicability Emissions (tons per year)

Pollutants	PM ₁₀	PM _{2.5}	NOx	co	SO ₂	VOC	HAPs	GHG ¹
Source Applicability Emissions	9.85	1.58	3.26	2.55	0.18	188.00	9.30	11,440.88
Major Source Thresholds (Title V)	100	100	100	100	100	100	10/25 ²	1
Major Stationary Source Thresholds (PSD)	250	250	-	250	250	-	10/25 ²	-
Major Stationary Source Threshold (Nonattainment)	-	-	100	-	-	100	-	-

¹In units of CO₂e.

As Table III-B-1 shows, Applicability Emissions are above the major source threshold for VOC pollutants. The source will retain the classification as a major Part 70 stationary source for VOC and a minor source for all other regulated pollutants.

C. SOURCE PTE

The source PTE equals the applicability emissions since fugitives are included in both.

Table III-C-1: Source PTE (tons per year)

PM ₁₀	PM _{2.5}	NOx	СО	SO ₂	VOC	HAP	GHG
9.85	1.58	3.26	2.55	0.18	188.00	9.30	11,440.88

Table III-C-2: Emissions Increase (tons per year)

Description	PM ₁₀	PM _{2.5}	NOx	СО	SO ₂	VOC	HAP	GHG ¹
Current Permitting Action	9.85	1.58	3.26	2.55	0.18	188.00	9.30	11,440.88
Renewal OP Issued 01/29/2024	8.40	1.42	3.26	2.55	0.18	188.00	9.30	11,440.88
Net Emissions Increase	1.45	0.16 ¹	0	0	0	0	0	0
AQR 12.5.1(d) Minor NSR Significance Levels	7.5	5.0	20	50	20	20		N/A
AQR 12.2.2(uu) Significance Thresholds	15	10	40	100	40	40	10	N/A
RACT/BACT Analysis Required	No	No	No	No	No	No	No	No

¹ The actual NEI is 0.15 tpy with respect to the changes to EU E01. 0.16 tpy is the adjusted emission increase after correcting a previous spreadsheet calculation error.

As shown in Table III-C-2, the minor NSR significant levels have not been exceeded. Therefore, a RACT analysis is not required.

Emissions Statement

Any stationary source that actually emits a total of 25 tons or more of NO_x and/or 25 tons or more of VOCs is required to submit an annual emissions statement for both pollutants. The statement must provide actual annual NO_x and VOC emissions from all activities, including emission units, insignificant activities, and exempt activities, and will be separate from the emissions inventory

²10 tons for any individual hazardous air pollutant or 25 tons for combination of all HAPs.

(i.e., calculated annual emissions) report permittees submit each year. This requirement shall be a permit condition for any source with the potential to emit at least 20 tons of NO_x and/or VOCs, since those sources are the most likely to trigger it.

D. OPERATIONAL LIMITS

The permittee shall limit the VMT on unpaved haul road to 5,457 miles in any consecutive 12-month period (EU: E01).

E. CONTROL TECHNOLOGY

There are no additional control requirements associated with this permitting action. All control requirements established with previous permitting actions remain enforceable.

F. MONITORING

There are no additional monitoring requirements associated with this permitting action. All monitoring requirements established with previous permitting actions remain enforceable.

G. PERFORMANCE TESTING

There are no additional performance testing requirements associated with this permitting action. All performance testing requirements established with previous permitting actions remain enforceable.

IV. REGULATORY REVIEW

There are no additional local or federal requirements associated with this permitting action. All regulations identified with previous permitting actions remain enforceable.

V. INCREMENT ANALYSIS

An increment analysis is not required. The proposed action does not emit a pollutant that triggers a minor source baseline date for Hydrographic Area 212.

VI. PUBLIC PARTICATION

Under AQR 12.5.2.17, the public participation requirement is not triggered for minor revisions.

VII. ENVIRONMENTAL JUSTICE

The environmental justice assessment conducted for the renewal permit issued on January 29, 2024, is still valid. Therefore, an environmental justice assessment is not required for this permitting action.

VIII. ATTACHMENTS

Table VIII-1. PTE Calculations for Modified Emission Unit (Haul Road)

EU	Description	VMT/yr	EF (lb/	/MT)	CF	PTE (ton/yr)	
	2000.ip.iio.ii	V 101 17 y 1	PM _{2.5}	PM ₁₀	9:	PM _{2.5}	PM ₁₀
F01	Haul Road; Unpaved	5,457	0.767	7.57	0.1	0.21	2.07
E01	Haul Road; Paved	99,630	1.14	7.57	0.02	1.14	7.54

Table VIII-2. Source PTE and Applicability Emissions (tons per year)

EU	Source ID No.	Condition				PTE (tpy)			
		(gal/yr)	PM ₁₀	PM _{2.5}	NOx	СО	SO ₂	VOC	HAP
A01	Tank 530	28,560,000	0	0	0	0	0	1.33	0.07
A02	Tank 531	32,460,000	0	0	0	0	0	1.41	0.07
A03	Tank 532	20,340,000	0	0	0	0	0	1.14	0.06
A04	Tank 533	28,560,000	0	0	0	0	0	1.33	0.07
A05	Tank 534	20,340,000	0	0	0	0	0	1.14	0.06
A06	Tank 535	20,340,000	0	0	0	0	0	1.14	0.06
A07	Tank 536	44,220,000	0	0	0	0	0	1.64	0.09
A08	Tank 537	90,000,000	0	0	0	0	0	1.88	0.10
A09	Tank 538	28,560,000	0	0	0	0	0	2.76	0.14
A10	Tank 539	50,000,000,	0	0	0	0	0	1.38	0.07
A11	Tank 540	137,000,000	0	0	0	0	0	1.90	0.10
A12	Tank 541	864,000,000	0	0	0	0	0	1.61	0.08
A13	Tank 524	50,760,000	0	0	0	0	0	0.75	0.04
A14	Tank 542	118,500,000	0	0	0	0	0	0.17	0.01
A15	Tank 543	114,660,000	0	0	0	0	0	0.18	0.01
A16	Tank 545	88,200,000	0	0	0	0	0	2.14	0.11
A17	Tank 546	100,800,000	0	0	0	0	0	2.94	0.15
A18	Tank 522	9,000,000	0	0	0	0	0	0.28	0.01
A19	Tank 525	350,000,000	0	0	0	0	0	1.84	0.01
A20	Tank 526	220,500,000	0	0	0	0	0	1.47	0.01
A21	Tank 547	100,800,000	0	0	0	0	0	2.58	0.14
A22	Tank 512	126,000,000	0	0	0	0	0	1.77	0.01
A23	Tank 510	100,800,000	0	0	0	0	0	0.18	0.01
A24	Tank 511	100,800,000	0	0	0	0	0	0.18	0.01
A27	Tank 501	9,540,000	0	0	0	0	0	0.32	0.01
A28	Tank 523	23,580,000	0	0	0	0	0	1.53	0.08
A29	Tank 544	27,720,000	0	0	0	0	0	1.72	0.09
A45	Tank 548	32,460,000	0	0	0	0	0	1.85	0.10
A46	Tank 549	32,460,000	0	0	0	0	0	1.04	0.05
A47	Tank 550	70,000,000	0	0	0	0	0	1.81	0.09
A48	Tank 551	50,400,000	0	0	0	0	0	1.75	0.09
A56	Tank 513	189,000,000	0	0	0	0	0	0.23	0.01
A57	Tank 514	189,000,000	0	0	0	0	0	0.23	0.01
A58	Tank 553	302,400,000	0	0	0	0	0	4.29	0.23
A59	Tank 554	604,800,000	0	0	0	0	0	4.98	0.26
A60	Tank 555	604,800,000	0	0	0	0	0	3.41	0.18

Scott Chappell

EU	Source ID No.	Condition	PTE (tpy)								
	Course ID Itel	(gal/yr)	PM ₁₀	PM _{2.5}	NOx	СО	SO ₂	voc	HAP		
A61	Tank 552	126,000,000	0	0	0	0	0	2.26	0.12		
B04	Tank 500	7,560,000	0	0	0	0	0	0.55	0.03		
B05	Tank 521	12,720,000	0	0	0	0	0	1.24	0.06		
A25	ASA Conductivity Improver	5,040	0	0	0	0	0	0.01	0.01		
A26	Tank 500AIA	95,949	0	0	0	0	0	0.01	0.01		
A30	Tank 533A	95,949	0	0	0	0	0	0.02	0.01		
A31	Tank 537A	95,949	0	0	0	0	0	0.02	0.01		
A32	Tank 541A	148,050	0	0	0	0	0	0.02	0.01		
A33	541B	148,050	0	0	0	0	0	0.02	0.01		
A34	542D	81,207	0	0	0	0	0	0.02	0.01		
A35	542A	79,286	0	0	0	0	0	0.02	0.01		
A36	531A	55,661	0	0	0	0	0	0.01	0.01		
A37	542C	5,040	0	0	0	0	0	0.01	0.01		
A38	537B	95,949	0	0	0	0	0	0.03	0.01		
A39	531B	44,100	0	0	0	0	0	0.01	0.01		
A49	542B	5,040	0	0	0	0	0	0.01	0.01		
A53	548B	57,519	0	0	0	0	0	0.02	0.01		
A54	548A	95,949	0	0	0	0	0	0.03	0.01		
H10	500B	132,000	0	0	0	0	0	0.01	0.01		
H14	ASA Tote	390	0	0	0	0	0	0.01	0.01		
H15	CI Tote	3,300	0	0	0	0	0	0.01	0.01		
H16	Lane 7 Red Dye Tote	6,150	0	0	0	0	0	0.01	0.01		
H17	Lane 12 Red Dye Tote	6,150	0	0	0	0	0	0.01	0.01		
H18	Sample Recovery Tank	13,000	0	0	0	0	0	0.34	0.03		
B01A	B-100	147,168,000	0	0	0	0	0	0.04	0.01		
H09	Ethanol Unloading System	76,104,000	0	0	0	0	0	0.18	0.01		
B02	John Zink VRU	1,485,776,586	0	0	0	0	0	14.48	0.72		
B10	Flare Processing	498,843.57 lb/yr	0.04	0.04	0.32	1.45	0.15	65.71	3.11		
SR04	SVE and GW Treatment System	8,760 hr/yr	0.07	0.07	1.26	0.73	0.01	37.67	1.78		
H02	Mainline Sump	302,400	0	0	0	0	0	0.41	0.02		

EU	Source ID No.	Condition	PTE (tpy)							
		(gal/yr)	PM ₁₀	PM _{2.5}	NOx	СО	SO ₂	VOC	HAP	
H03	Rack Sump	806,400	0	0	0	0	0	1.13	0.06	
H04	Mainline Sump	100,800	0	0	0	0	0	0.51	0.03	
H06	Waste Fuel	75,600	0	0	0	0	0	0.01	0.01	
H07	Waste Fuel	36,000	0	0	0	0	0	0.01	0.01	
H08	Waste Fuel	7,200	0	0	0	0	0	0.02	0.01	
D01	Diesel/Biodiesel	25,000	0	0	0	0	0	0.01	0.01	
H11	Oil/Water Separator	15,768,000	0	0	0	0	0	0.08	0.01	
H12	Waste Fuel/Oil/Water	365,000	0	0	0	0	0	0.04	0.01	
B06	Piping and Fittings	21,888	0	0	0	0	0	6.56	0.35	
F04	Haul Road - Paved	99,630 VMT/yr	7.54	1.14	0	0	0	0.00	0.00	
E01	Haul Road – Unpaved	5,457 VMT/yr	2.07	0.21	0	0	0	0	0	
H05	Cooling Tower	8,760 hr/yr	0.01	0.00	0	0	0	0	0	
B11	Air Compressor	100 hr/yr	0.01	0.01	0.07	0.02	0.01	0.01	0.01	
D02	Fire Water Engine	500 hr/yr	0.11	0.11	1.61	0.35	0.01	0.13	0.01	
_	Total		9.85	1.58	3.26	2.55	0.18	188.00	9.30	